Fault Diagnosis of Rotary Parts of a Heavy-Duty Horizontal Lathe Based on Wavelet Packet Transform and Support Vector Machine

Sensors (Basel). 2019 Sep 20;19(19):4069. doi: 10.3390/s19194069.

Abstract

The spindle box is responsible for power transmission, supporting the rotating parts and ensuring the rotary accuracy of the workpiece in the heavy-duty machine tool. Its assembly quality is crucial to ensure the reliable power supply and stable operation of the machine tool in the process of large load and cutting force. Therefore, accurate diagnosis of assembly faults is of great significance for improving assembly efficiency and ensuring outgoing quality. In this paper, the common fault types and characteristics of the spindle box of heavy horizontal lathe are analyzed first, and original vibration signals of various fault types are collected. The wavelet packet is used to decompose the signal into different frequency bands and reconstruct the nodes in the frequency band where the characteristic frequency points are located. Then, the power spectrum analysis is carried out on the reconstructed signal, so that the fault features in the signal can be clearly expressed. The structure of the feature vector used for fault diagnosis is analyzed and the feature vector is extracted from the collected signals. Finally, the intelligent pattern recognition method based on support vector machine is used to classify the fault types. The results show that the method proposed in this paper can quickly and accurately judge the fault types.

Keywords: fault diagnosis; pattern recognition; power spectrum analysis; support vector machine; wavelet packet transform.