Age-related increase of kynurenic acid in human cerebrospinal fluid - IgG and beta2-microglobulin changes

Neurosignals. 2005;14(3):126-35. doi: 10.1159/000086295.

Abstract

Kynurenic acid (KYNA) is an endogenous metabolite in the kynurenine pathway of tryptophan degradation and is an antagonist at the glycine site of the N-methyl-D-aspartate as well as at the alpha 7 nicotinic cholinergic receptors. In the brain tissue KYNA is synthesised from L-kynurenine by kynurenine aminotransferases (KAT) I and II. A host of immune mediators influence tryptophan degradation. In the present study, the levels of KYNA in cerebrospinal fluid (CSF) and serum in a group of human subjects aged between 25 and 74 years were determined by using a high performance liquid chromatography method. In CSF and serum KAT I and II activities were investigated by radioenzymatic assay, and the levels of beta(2)-microglobulin, a marker for cellular immune activation, were determined by ELISA. The correlations between neurochemical and biological parameters were evaluated. Two subject groups with significantly different ages, i.e. <50 years and >50 years, p < 0.001, showed statistically significantly different CSF KYNA levels, i.e. 2.84 +/- 0.16 fmol/microl vs. 4.09 +/- 0.14 fmol/microl, p < 0.001, respectively; but this difference was not seen in serum samples. Interestingly, KYNA is synthesised in CSF principally by KAT I and not KAT II, however no relationship was found between enzyme activity and ageing. A positive relationship between CSF KYNA levels and age of subjects indicates a 95% probability of elevated CSF KYNA with ageing (R = 0.6639, p = 0.0001). KYNA levels significantly correlated with IgG and beta(2)-microglobulin levels (R = 0.5244, p = 0.0049; R = 0.4253, p = 0.043, respectively). No correlation was found between other biological parameters in CSF or serum. In summary, a positive relationship between the CSF KYNA level and ageing was found, and the data would suggest age-dependent increase of kynurenine metabolism in the CNS. An enhancement of CSF IgG and beta(2)-microglobulin levels would suggest an activation of the immune system during ageing. Increased KYNA metabolism may be involved in the hypofunction of the glutamatergic and/or nicotinic cholinergic neurotransmission in the ageing CNS.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aging / metabolism*
  • Analysis of Variance
  • Brain Chemistry / physiology
  • Chromatography, High Pressure Liquid / methods
  • Enzyme-Linked Immunosorbent Assay / methods
  • Female
  • Humans
  • Immunoglobulin G / blood
  • Immunoglobulin G / cerebrospinal fluid*
  • Kynurenic Acid / blood
  • Kynurenic Acid / cerebrospinal fluid*
  • Linear Models
  • Male
  • Middle Aged
  • Radioimmunoassay / methods
  • Transaminases / blood
  • Transaminases / cerebrospinal fluid
  • beta 2-Microglobulin / blood
  • beta 2-Microglobulin / cerebrospinal fluid*

Substances

  • Immunoglobulin G
  • beta 2-Microglobulin
  • Transaminases
  • kynurenine-oxoglutarate transaminase
  • Kynurenic Acid