Assessment of Micafungin Dosage Regimens in Patients with Cancer Using Pharmacokinetic/Pharmacodynamic Modeling and Monte Carlo Simulation

Antibiotics (Basel). 2021 Nov 8;10(11):1363. doi: 10.3390/antibiotics10111363.

Abstract

Micafungin is widely used for invasive candidiasis, especially in critically ill patients and those with cancer, and for empirical antifungal therapy in patients with neutropenic fever. This is the first study to investigate the pharmacokinetics and disposition parameters of micafungin in patients with cancer. In this observational pharmacokinetic study, blood samples were collected and analyzed using high-performance liquid chromatography. Pharmacokinetic parameters were estimated using Monolix 4.4 software. The plasma micafungin concentrations were measured in a total of 133 samples from 19 patients. In the final two-compartment model with linear elimination, the estimated micafungin clearance (CL) was significantly higher in patients with cancer than in those without cancer (1.2 vs. 0.6 L/h, p = 0.012), whereas other parameters did not significantly differ between the two groups. Aspartate and alanine transaminases and body weight significantly influenced micafungin CL in patients, with and without cancer. Overall, the probability of target attainment increased with increasing doses and decreased with higher MICs in both groups. In simulations, the patients without cancer achieved higher pharmacokinetic/pharmacodynamic targets with a 90% probability for all simulated doses, compared to the patients with cancer. Micafungin demonstrated dose-proportional linear pharmacokinetics in both the patients with and those without cancer. The estimated micafungin CL was significantly higher in patients with cancer, suggesting a need for increased dosage, especially for Candida spp. with high MICs, in these patients. Further studies should assess the efficacy and optimum dosage of micafungin for the treatment and prevention of febrile neutropenia (FN) in patients with cancer.

Keywords: Monte Carlo simulation; cancer; micafungin; modeling; population pharmacokinetics.