Successive Short- and Long-Range Magnetic Ordering in Ba2Mn3(SeO3)6 with Honeycomb Layers of Mn3+ Ions Alternating with Triangular Layers of Mn2+ Ions

Materials (Basel). 2023 Mar 28;16(7):2685. doi: 10.3390/ma16072685.

Abstract

Mixed-valent Ba2Mn2+Mn23+(SeO3)6 crystallizes in a monoclinic P21/c structure and has honeycomb layers of Mn3+ ions alternating with triangular layers of Mn2+ ions. We established the key parameters governing its magnetic structure by magnetization M and specific heat Cp measurements. The title compound exhibits a close succession of a short-range correlation order at Tcorr = 10.1 ± 0.1 K and a long-range Néel order at TN = 5.7 ± 0.1 K, and exhibits a metamagnetic phase transition at T < TN with hysteresis most pronounced at low temperatures. The causes for these observations were found using the spin exchange parameters evaluated by density functional theory calculations. The title compound represents a unique case in which uniform chains of integer spin Mn3+ (S = 2) ions interact with those of half-integer spin Mn2+ (S = 5/2) ions.

Keywords: first principles’ calculations; honeycomb lattice; long-range magnetic order; short-range magnetic order; triangular lattice.