Effect of Polymer Dissolution Temperature and Conditioning Time on the Morphological and Physicochemical Characteristics of Poly(Vinylidene Fluoride) Membranes Prepared by Non-Solvent Induced Phase Separation

Polymers (Basel). 2021 Nov 23;13(23):4062. doi: 10.3390/polym13234062.

Abstract

This work reports on the production of poly(vinylidene fluoride) (PVDF) membranes by non-solvent induced phase separation (NIPS) using N,N-dimethylformamide (DMF) as solvent and water as non-solvent. The influence of the processing conditions in the morphology, surface characteristics, structure, thermal and mechanical properties were evaluated for polymer dissolution temperatures between 25 and 150 °C and conditioning time between 0 and 10 min. Finger-like pore morphology was obtained for all membranes and increasing the polymer dissolution temperature led to an increase in the average pore size (≈0.9 and 2.1 µm), porosity (≈50 to 90%) and water contact angle (up to 80°), in turn decreasing the β PVDF content (≈67 to 20%) with the degree of crystallinity remaining approximately constant (≈56%). The conditioning time did not significantly affect the polymer properties studied. Thus, the control of NIPS parameters proved to be suitable for tailoring PVDF membrane properties.

Keywords: conditioning time; dissolution temperature; membranes; non-solvent induced phase separation; poly(vinylidene fluoride).