Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture

Bioresour Bioprocess. 2022 Dec 19;9(1):130. doi: 10.1186/s40643-022-00612-5.

Abstract

Marine microalgae have received much attention as a sustainable source of the two health beneficial omega-3-fatty acids docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5). However, photoautotrophic monocultures of microalgae can only produce either DHA or EPA enriched biomass. An alternative may be the photoautotrophic co-cultivation of Tisochrysis lutea as DHA-producer with Microchloropsis salina for simultaneous EPA production to obtain EPA- and DHA-rich microalgae biomass in a nutritionally balanced ratio. Photoautotrophic co-cultivation processes of T. lutea and M. salina were studied, applying scalable and fully controlled lab-scale gas-lift flat-plate photobioreactors with LED illumination for dynamic climate simulation of a repeated sunny summer day in Australia [day-night cycles of incident light (PAR) and temperature]. Monocultures of both marine microalgae were used as reference batch processes. Differences in the autofluorescence of both microalgae enabled the individual measurement, of cell distributions in co-culture, by flow cytometry. The co-cultivation of T. lutea and M. salina in artificial sea water with an inoculation ratio of 1:3 resulted in a balanced biomass production of both microalgae simultaneously with a DHA:EPA ratio of almost 1:1 (26 mgDHA gCDW-1, and 23 mgEPA gCDW-1, respectively) at harvest after depletion of the initially added fertilizer. Surprisingly, more microalgae biomass was produced within 8 days in co-cultivation with an increase in the cell dry weight (CDW) concentration by 31%, compared to the monocultures with the same amount of light and fertilizer. What is more, DHA-content of the microalgae biomass was enhanced by 33% in the co-culture, whereas EPA-content remained unchanged compared to the monocultures.

Keywords: Microchloropsis salina; Tisochrysis lutea; Co-cultivation; Docosahexaenoic acid (DHA); Eicosapentaenoic acid (EPA); Photoautotrophic microalgae.