The Impact of Yeast Encapsulation in Wort Fermentation and Beer Flavor Profile

Polymers (Basel). 2023 Mar 31;15(7):1742. doi: 10.3390/polym15071742.

Abstract

The food and beverage industry is constantly evolving, and consumers are increasingly searching for premium products that not only offer health benefits but a pleasant taste. A viable strategy to accomplish this is through the altering of sensory profiles through encapsulation of compounds with unique flavors. We used this approach here to examine how brewing in the presence of yeast cells encapsulated in alginate affected the sensory profile of beer wort. Initial tests were conducted for various combinations of sodium alginate and calcium chloride concentrations. Mechanical properties (i.e., breaking force and elasticity) and stability of the encapsulates were then considered to select the most reliable encapsulating formulation to conduct the corresponding alcoholic fermentations. Yeast cells were then encapsulated using 3% (w/v) alginate and 0.1 M calcium chloride as a reticulating agent. Fourteen-day fermentations with this encapsulating formulation involved a Pilsen malt-based wort and four S. cerevisiae strains, three commercially available and one locally isolated. The obtained beer was aged in an amber glass container for two weeks at 4 °C. The color, turbidity, taste, and flavor profile were measured and compared to similar commercially available products. Cell growth was monitored concurrently with fermentation, and the concentrations of ethanol, sugars, and organic acids in the samples were determined via high-performance liquid chromatography (HPLC). It was observed that encapsulation caused significant differences in the sensory profile between strains, as evidenced by marked changes in the astringency, geraniol, and capric acid aroma production. Three repeated batch experiments under the same conditions revealed that cell viability and mechanical properties decreased substantially, which might limit the reusability of encapsulates. In terms of ethanol production and substrate consumption, it was also observed that encapsulation improved the performance of the locally isolated strain.

Keywords: alcoholic fermentation; alginate encapsulation; beer brewing; flavor modification; sensory profile.

Grants and funding

This research received no external funding.