Preserving Softness and Elastic Recovery in Silicone-Based Stretchable Electrodes Using Carbon Nanotubes

Polymers (Basel). 2020 Jun 14;12(6):1345. doi: 10.3390/polym12061345.

Abstract

Soft electronics based on various rubbers have lately been needed in many advanced applications such as soft robotics, wearable electronics, and remote health monitoring. The ability of a self-sensing material to be monitored in use provides a significant advantage. However, conductive fillers usually used to increase conductivity also change mechanical properties. Most importantly, the initial sought-after properties of rubber, namely softness and long elastic deformation, are usually compromised. This work presents full mechanical and electro-mechanical characterization, together with self-sensing abilities of a vinyl methyl silicone rubber (VMQ) and multi-walled carbon nanotubes (MWCNTs) composite, featuring conductivity while maintaining low hardness. The research demonstrates that MWCNT/VMQ with just 4 wt.% of MWCNT are as conductive as commercial conductive VMQ based on Carbon Black, while exhibiting lower hardness and higher elastic recovery (~20% plastic deformation, similar to pure rubber). The research also demonstrates piezo-resistivity and Raman-sensitivity, allowing for self-sensing. Using morphological data, proposed mechanisms for the superior electrical and mechanical behavior, as well as the in-situ fingerprint for the composite conditions are presented. This research novelty is in the full MWCNT/VMQ mechanical and electro-mechanical characterization, thus demonstrating its ability to serve as a sensor over large local strains, multiple straining cycles, and environmental damage.

Keywords: electrical properties; mechanical properties; microstructural analysis; multifunctional composites; nanocomposites; soft sensors.