Machine learning for manually-measured water quality prediction in fish farming

PLoS One. 2021 Aug 18;16(8):e0256380. doi: 10.1371/journal.pone.0256380. eCollection 2021.

Abstract

Monitoring variables such as dissolved oxygen, pH, and pond temperature is a key aspect of high-quality fish farming. Machine learning (ML) techniques have been proposed to model the dynamics of such variables to improve the fish farmer's decision-making. Most of the research on ML in aquaculture has focused on scenarios where devices for real-time data acquisition, storage, and remote monitoring are available, making it easy to develop accurate ML techniques. However, fish farmers do not necessarily have access to such devices. Many of them prefer to use equipment to manually measure these variables limiting the amount of available data to process. In this work, we study the use of random forests, multivariate linear regression, and artificial neural networks in scenarios with limited amount of measurements to analyze data from water-quality variables that are commonly measured in fish farming. We propose a methodology to build models in two scenarios: i) estimation of unobserved variables based on the observed ones, and ii) forecasting when a low amount of data is available for training. We show that random forests can be used to forecast dissolved oxygen, pond temperature, pH, ammonia, and ammonium when the water pond variables are measured only twice per day. Moreover, we showed that these prediction models can be implemented on a mobile-based information system and run in an average smartphone that fish farmers can afford.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia / analysis
  • Fisheries
  • Hydrogen-Ion Concentration
  • Linear Models
  • Machine Learning*
  • Oxygen / analysis
  • Temperature
  • Water / chemistry*
  • Water Quality*

Substances

  • Water
  • Ammonia
  • Oxygen

Grants and funding

This work was supported by the Ministry of Science, Technology, and Innovation through Convocatoria 808 Retos del País, by the Universidad de los Andes through Convocatoria de Regionalización, and by the Vice Presidency for Research & Creation publication fund at the Universidad de los Andes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.