Untargeted Metabolomics by Ultra-High-Performance Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometry Analysis Identifies a Specific Metabolomic Profile in Patients with Early Chronic Kidney Disease

Biomedicines. 2023 Mar 30;11(4):1057. doi: 10.3390/biomedicines11041057.

Abstract

Chronic kidney disease (CKD) has emerged as one of the most progressive diseases with increased mortality and morbidity. Metabolomics offers new insights into CKD pathogenesis and the discovery of new biomarkers for the early diagnosis of CKD. The aim of this cross-sectional study was to assess metabolomic profiling of serum and urine samples obtained from CKD patients. Untargeted metabolomics followed by multivariate and univariate analysis of blood and urine samples from 88 patients with CKD, staged by estimated glomerular filtration rate (eGFR), and 20 healthy control subjects was performed using ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry. Serum levels of Oleoyl glycine, alpha-lipoic acid, Propylthiouracil, and L-cysteine correlated directly with eGFR. Negative correlations were observed between serum 5-Hydroxyindoleacetic acid, Phenylalanine, Pyridoxamine, Cysteinyl glycine, Propenoylcarnitine, Uridine, and All-trans retinoic acid levels and eGFR. In urine samples, the majority of molecules were increased in patients with advanced CKD as compared with early CKD patients and controls. Amino acids, antioxidants, uremic toxins, acylcarnitines, and tryptophane metabolites were found in all CKD stages. Their dual variations in serum and urine may explain their impact on both glomerular and tubular structures, even in the early stages of CKD. Patients with CKD display a specific metabolomic profile. Since this paper represents a pilot study, future research is needed to confirm our findings that metabolites can serve as indicators of early CKD.

Keywords: acylcarnitines; amino acids; biomarkers; chronic kidney disease; metabolomics; uremic toxins.