Sustainable Grassland-Management Systems and Their Effects on the Physicochemical Properties of Soil

Plants (Basel). 2024 Mar 14;13(6):838. doi: 10.3390/plants13060838.

Abstract

Grassland covers approximately 17.4% of Europe's land area, stores about 20% of the world's soil carbon and has the potential to sequester carbon. With the help of sustainable management systems, grasslands could reduce greenhouse gases and act as a terrestrial sink for atmospheric CO2. In this study, we will investigate the effect of grassland management (cutting, grazing, and a combination of the two) and soil depth (0-10, 10-20, 20-30 cm) on the physical (volumetric water content-VWC, bulk density-BD, porosity-POR, mass consisting of coarse fragments-FC) and chemical properties of soil (organic carbon-SOC, inorganic carbon-SIC, total carbon-STC, total nitrogen-STN, organic matter-SOM, C/N ratio, pH) in Central European lowlands. The management system affected BD, SOC and STN and tended to affect VWC and STC in the first soil depth only. Grazing and the combined system stored greater amounts of STN, SOC and STC and had higher BDs at the surface (0-10 cm) compared to the cutting system. Most soil properties were influenced by soil depth, with C/N ratio and BD increasing and SOC, STC, STN, SOM, VWC and POR decreasing with depth. Our study highlights an opportunity for grassland users to improve soil quality, reduce fossil fuel usage and improve animal welfare through their management systems and argues that systems such as grazing and the combined system should be promoted to mitigate climate change.

Keywords: combined system; cutting; grassland long-term management; grazing; soil inorganic carbon; soil organic carbon; soil physicochemical property.