Nosocomial Outbreak of Extensively Drug-Resistant (Polymyxin B and Carbapenem) Klebsiella pneumoniae in a Collapsed University Hospital Due to COVID-19 Pandemic

Antibiotics (Basel). 2022 Jun 17;11(6):814. doi: 10.3390/antibiotics11060814.

Abstract

We correlated clinical, epidemiological, microbiological, and genomic data of an outbreak with polymyxin B (PB)- and carbapenem-resistant Klebsiella pneumoniae during the COVID-19 pandemic. Twenty-six PB- and carbapenem-resistant K. pneumoniae were isolated from patients in the COVID-19 ICU (Intensive Care Unit), non-COVID-19 ICU (Intensive Care Unit), clinical, or surgical ward. Bacterial identification, drug susceptibility tests, and DNA sequencing were performed, followed by in silico resistance genes identification. All isolates showed extensively drug-resistant (XDR) phenotypes. Four different sequence types (ST) were detected: ST16, ST11, ST258, and ST437. Nineteen isolates were responsible for an outbreak in the ICU in September 2020. They belong to ST258 and harbored the 42Kb IncX3plasmid (pKP98M3N42) with the same genomic pattern of two K. pneumoniae identified in 2018. Twenty-four isolates carried bla-KPC-2 gene. No plasmid-mediated colistin (mcr) resistance genes were found. Eight isolates presented mgrB gene mutation. The clonal isolates responsible for the outbreak came from patients submitted to pronation, with high mortality rates in one month. XDR-K. pneumoniae detected during the outbreak presented chromosomal resistance to PB and plasmid-acquired carbapenem resistance due to KPC production in most isolates and 42Kb IncX3(pKP98M3N42) plasmid carrying blaKPC-2 was associated with ST258 isolates. The outbreak followed the collapse of the local healthcare system with high mortality rates.

Keywords: KPC; clinical evaluation; extensively drug-resistance; molecular epidemiology; multidrug-resistance; polymyxin resistance.