Grey level and noise evaluation of a Foveon X3 image sensor: a statistical and experimental approach

Sensors (Basel). 2012;12(8):10339-68. doi: 10.3390/s120810339. Epub 2012 Jul 31.

Abstract

Radiometric values on digital imagery are affected by several sources of uncertainty. A practical, comprehensive and flexible procedure to analyze the radiometric values and the uncertainty effects due to the camera sensor system is described in this paper. The procedure is performed on the grey level output signal using image raw units with digital numbers ranging from 0 to 2(12)-1. The procedure is entirely based on statistical and experimental techniques. Design of Experiments (DoE) for Linear Models (LM) are derived to analyze the radiometric values and estimate the uncertainty. The presented linear model integrates all the individual sensor noise sources in one global component and characterizes the radiometric values and the uncertainty effects according to the influential factors such as the scene reflectance, wavelength range and time. The experiments are carried out under laboratory conditions to minimize the rest of uncertainty sources that might affect the radiometric values. It is confirmed the flexibility of the procedure to model and characterize the radiometric values, as well as to determine the behaviour of two phenomena when dealing with image sensors: the noise of a single image and the stability (trend and noise) of a sequence of images.

Keywords: design of experiments (DoE); digital image; grey level values; linear model (LM); noise; photon transfer method (PTM); radiometry.

Publication types

  • Research Support, Non-U.S. Gov't