Hepatoprotective Effects of Chitosan and Chitosan Nanoparticles against Biochemical, Genetic, and Histological Disorders Induced by the Toxicity of Emamectin Benzoate

Rep Biochem Mol Biol. 2021 Oct;10(3):506-514. doi: 10.52547/rbmb.10.3.506.

Abstract

Background: Emamectin benzoate (EMB) is a biopesticide which used in agriculture as an insecticide. It is easier to reach ecologically and affects human health. This study aims to evaluate the protective effect of chitosan and chitosan nanoparticles against EMB-induced hepatotoxicity.

Methods: Male mice were distributed into four groups: G1: the negative control, G2: EMB group (5 mg/kg diet), G3: EMB with Chitosan, (600 mg/kg diet), and G4: EMB with Chitosan nanoparticles (600 mg/kg diet). The experiment continues for 8 weeks, and the animals were sacrificed, and their organs were removed and immediately weighed after sacrifice. The liver was quickly removed and processed for histopathological and genetic studies.

Results: Emamectin benzoate (EMB) treatment induced oxidative stress by increased levels of Malondialdehyde (MDA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) with inhibition of acetylcholinesterase (AChE), Superoxide dismutase (SOD) and Catalase (CAT) levels. EMB produced several histopathological changes in the liver. Relative expressions of studied genes elevated in the liver with increase in DNA damage. Co-treatment with chitosan and chitosan nanoparticles reduced EMB related liver toxicity that belong to biochemical, histopathological, gene expression, and DNA damage by increasing antioxidant capacity.

Conclusion: This study offers insight into the potential for Chitosan and chitosan nanoparticles as a novel natural material against the oxidative stress induced by EMB.

Keywords: Chitosan Nanoparticles; DNA Fragmentation; Emamectin Benzoate; Gene Expression; Hepatotoxicity.