Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch

Materials (Basel). 2020 Apr 7;13(7):1728. doi: 10.3390/ma13071728.

Abstract

Synthesis of graphene materials in a plasma stream from an up to 40 kW direct current (DC) plasma torch is investigated. These materials are created by means of the conversion of hydrocarbons under the pressure 350-710 Torr without using catalysts, without additional processes of inter-substrate transfer and the elimination of impurities. Helium and argon are used as plasma-forming gas, propane, butane, methane, and acetylene are used as carbon precursors. Electron microscopy and Raman imaging show that synthesis products represent an assembly of flakes varying in the thickness and the level of deformity. An occurrence of hydrogen in the graphene flakes is discovered by X-ray photoelectron spectroscopy, thermal analysis, and express-gravimetry. Its quantity depends on the type of carrier gas. Quasi-one-dimensional approach under the local thermodynamic equilibrium was used to investigate the evolution of the composition of helium and argon plasma jets with hydrocarbon addition. Hydrogen atoms appear in the hydrogen-rich argon jet under higher temperature. This shows that solid particles live longer in the hydrogen-rich environment compared with the helium case providing some enlargement of graphene with less hydrogen in its structure. In conclusion, graphene in flakes appears because of the volumetric synthesis in the hydrogen environment. The most promising directions of the practical use of graphеne flakes are apparently related to structural ceramics.

Keywords: conversion of hydrocarbons; graphеne flakes; hydrogen; plasma jet; quasi-one-dimensional flow; synthesis.