MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors

Sensors (Basel). 2023 Jan 6;23(2):656. doi: 10.3390/s23020656.

Abstract

Many individuals worldwide pass away as a result of inadequate procedures for prompt illness identification and subsequent treatment. A valuable life can be saved or at least extended with the early identification of serious illnesses, such as various cancers and other life-threatening conditions. The development of the Internet of Medical Things (IoMT) has made it possible for healthcare technology to offer the general public efficient medical services and make a significant contribution to patients' recoveries. By using IoMT to diagnose and examine BreakHis v1 400× breast cancer histology (BCH) scans, disorders may be quickly identified and appropriate treatment can be given to a patient. Imaging equipment having the capability of auto-analyzing acquired pictures can be used to achieve this. However, the majority of deep learning (DL)-based image classification approaches are of a large number of parameters and unsuitable for application in IoMT-centered imaging sensors. The goal of this study is to create a lightweight deep transfer learning (DTL) model suited for BCH scan examination and has a good level of accuracy. In this study, a lightweight DTL-based model "MobileNet-SVM", which is the hybridization of MobileNet and Support Vector Machine (SVM), for auto-classifying BreakHis v1 400× BCH images is presented. When tested against a real dataset of BreakHis v1 400× BCH images, the suggested technique achieved a training accuracy of 100% on the training dataset. It also obtained an accuracy of 91% and an F1-score of 91.35 on the test dataset. Considering how complicated BCH scans are, the findings are encouraging. The MobileNet-SVM model is ideal for IoMT imaging equipment in addition to having a high degree of precision. According to the simulation findings, the suggested model requires a small computation speed and time.

Keywords: Internet of Medical Things; breast cancer histology; deep convolutional neural network.

MeSH terms

  • Diagnostic Imaging
  • Humans
  • Internet
  • Internet of Things*
  • Radionuclide Imaging
  • Support Vector Machine*

Grants and funding

This research received no external funding.