Ecological risk changes and their relationship with exposed surface fraction in the karst region of southern China from 1990 to 2020

J Environ Manage. 2022 Dec 1:323:116206. doi: 10.1016/j.jenvman.2022.116206. Epub 2022 Sep 14.

Abstract

Due to anthropogenic disturbances, the karst region in southern China is vulnerable to ecological problems such as soil erosion and surface exposure. However, limited studies on variations in large-scale ecological risk (ER) and their influencing factors, particularly the coupling/decoupling relationship with an exposed surface fraction (ESF), make ER regulations and ecological restoration challenging. The present study evaluates the ER of eight typical karst provinces in Southern China from 1990 to 2020 using the technique for order preference by similarity to an ideal solution (TOPSIS) model and ecosystem services (habitat quality, water yield, carbon storage, soil conservation, and food production), and extracts the contemporaneous ESF using Landsat satellite data in Google Earth Engine (GEE). The spatiotemporal change of ER and ESF are analyzed, and their coupling/decoupling relationship and driving mechanism are explored using coupling coordination degree (CCD) and multi-scale geographically weighted regression (MGWR) models. The results show that: (1) Over the past 30 years, the ER has increased until 2010 and subsequently declined, with an increasing mean value (0.463-0.503), except in Chongqing municipality. The ESF decreased significantly (the mean value dropped from 44.7% to 38.7%), except that in Sichuan province. (2) The average CCD between ER and ESF decreased with fluctuation of -0.017, with a decoupling relationship (58.18%). The coupling area is larger than the decoupling area in the Sichuan area, while other provinces are opposite. (3) The coupling/decoupling relationship in the study area is mainly driven by terrain (elevation, slope) and socio-economic (population density, per capita GDP) factors. More attention should be paid to the role of these factors in the continuous reduction and control of ESF and ER. This study can serve as a reference for similar studies in karst regions, such as risk assessment and surface monitoring, rocky desertification control, ecological engineering layout, and territorial planning.

Keywords: Coupling/decoupling relationship; Driving mechanism; Ecological risk; Exposed surface fraction; Karst region in China; Spatiotemporal change.

MeSH terms

  • Carbon
  • China
  • Conservation of Natural Resources*
  • Ecosystem*
  • Soil

Substances

  • Carbon
  • Soil