A state-of-the-art review on interactive mechanisms and multi-scale application of biopolymers (BPs) in geo-improvement and vegetation growth

J Environ Manage. 2024 Apr 20:358:120905. doi: 10.1016/j.jenvman.2024.120905. Online ahead of print.

Abstract

The global trend toward sustainable development, coupled with growing concerns about environmental pollution and the depletion of fossil energy resources, has contributed to the widespread implementation of biopolymers (BPs) as bio-solutions for geo-infrastructures stabilization. In this respect, previous attempts proved that soil treatment with BP can guarantee the strength improvement of geo-materials by satisfying environmental standards. However, the applications, mechanisms, and interactions of BPs within geo-environments need more investigations on their suitability for specific sites, long-term durability, and economic viability. The present study aims to provide an in-depth and up-to-date analysis of BPs and outline potential future paths toward BP applications. To this end, after examining the process of producing BPs, we investigate bio-physicochemical behavior and their function mechanism within the soil matrix. In addition, the impact of environmental conditions on soil stabilization with BPs is evaluated. Finally, some recommendations are offered for selecting the types and doses of BPs to improve soil against erosion and to obtain high hydrodynamic resistance. The results outline that bio-chemical mechanisms (including bio-cementing, bio-clogging, bio-encapsulation, and bio-coating) play significant roles in stabilizing cohesive and non-cohesive soil properties. Besides, the findings suggest that the efficacy of BPs depends upon various factors, including the composition and concentration of BPs, soil characteristics, and the magnitude of electrostatic and van der Waals forces formed during bio-chemo-reaction, biocrystallization, and bio-gel production. Between various BPs, using Xanthan gum (XG) and Guar gum (GG) exhibited optimal efficacy, enhancing mechanical strength by up to 300%. Furthermore, BPs concurrently reduced permeability, erosion, compressibility, and shrinkage characteristics. Applying BPs in soils improves germination and vegetation growth, lowers the wilting rate, and reduces soil acidity (considering their natural origin). Overall, selecting suitable BPs was found to be dependent on key factors, including temperature, curing time, and pH. The findings from this study can provide a scientific foundation for planning, constructing and preserving of bio-geo-structures in various construction sites.

Keywords: Bio-mechanisms; Bio-polymers; Soil stabilization; Sustainable development; Vegetation growth.

Publication types

  • Review