Biodeterioration of Microplastics: A Promising Step towards Plastics Waste Management

Polymers (Basel). 2022 Jun 2;14(11):2275. doi: 10.3390/polym14112275.

Abstract

Polyethylene and Polyester materials are resistant to degradation and a significant source of microplastics pollution, which is an emerging concern. In the present study, the potential of a dumped site bacterial community was evaluated. After primary screening, it was observed that 68.5% were linear low-density polyethylene, 33.3% were high-density, and 12.9% were Polyester degraders. Five strains were chosen for secondary screening, in which they were monitored by FTIR, SEM and weight loss degradation trials. Major results were observed for Alcaligenes faecalis (MK517568) and Bacillus cereus (MK517567), as they showed the highest degradation activity. Alcaligenes faecalis (MK517568) degrades LLDPE by 3.5%, HDPE by 5.8% and Polyester by 17.3%. Bacillus cereus (MK517567) is better tolerated at 30 °C and degrades Polyester by 29%. Changes in infrared spectra indicated degradation pathways of different strains depending on the types of plastics targeted. Through SEM analysis, groves, piths and holes were observed on the surface. These findings suggest that soil bacteria develop an effective mechanism for degradation of microplastics and beads that enables them to utilize plastics as a source of energy without the need for pre-treatments, which highlights the importance of these soil bacteria for the future of effective plastic waste management in a soil environment.

Keywords: landfill; micro-pollutants; polyester; polyethylene; soil biota.

Grants and funding

This research received no external funding.