General Purpose Transistor Characterized as Dosimetry Sensor of Proton Beams

Sensors (Basel). 2023 Apr 6;23(7):3771. doi: 10.3390/s23073771.

Abstract

A commercial pMOS transistor (MOSFET), 3N163 from Vishay (USA), has been characterized as a low-energy proton beam dosimeter. The top of the samples' housing has been removed to guarantee that protons reached the sensitive area, that is, the silicon die. Irradiations took place at the National Accelerator Centre (Seville, Spain). During irradiations, the transistors were biased to improve the sensitivity, and the silicon temperature was monitored activating the parasitic diode of the MOSFET. Bias voltages of 0, 1, 5, and 10 V were applied to four sets of three transistors, obtaining an averaged sensitivity that was linearly dependent on this voltage. In addition, the short-fading effect was studied, and the uncertainty of this effect was obtained. The bias voltage that provided an acceptable sensitivity, (11.4 ± 0.9) mV/Gy, minimizing the uncertainty due to the fading effect (-0.09 ± 0.11) Gy was 1 V for a total absorbed dose of 40 Gy. Therefore, this off-the-shelf electronic device presents promising characteristics as a dosimeter sensor for proton beams.

Keywords: dosimetry; general purpose MOSFET; proton beams.