Luteolin: A Phytochemical to Mitigate S. Typhimurium Flagellin-Induced Inflammation in a Chicken In Vitro Hepatic Model

Animals (Basel). 2023 Apr 20;13(8):1410. doi: 10.3390/ani13081410.

Abstract

The use of natural feed supplements is an alternative tool to diminish the damage caused by certain bacteria, improving animal health and productivity. The present research aimed to investigate the proinflammatory effect of flagellin released from the bacterial flagellum of Salmonella enterica serovar Typhimurium and to attenuate the induced inflammation with luteolin as a plant-derived flavonoid on a chicken primary hepatocyte-non-parenchymal cell co-culture. Cells were cultured in a medium supplemented with 250 ng/mL flagellin and 4 or 16 µg/mL luteolin for 24 h. Cellular metabolic activity, lactate dehydrogenase (LDH) activity, interleukin-6, 8, 10 (IL-6, IL-8, IL-10), interferon-α, γ (IFN-α, IFN-γ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations were determined. Flagellin significantly increased the concentration of the proinflammatory cytokine IL-8 and the ratio of IFN-γ/IL-10, while it decreased the level of IL-10, indicating that the model served adequate to study inflammation in vitro. Luteolin treatment at 4 µg/mL did not prove to be cytotoxic, as reflected by metabolic activity and extracellular LDH activity, and significantly reduced the flagellin-triggered IL-8 release of the cultured cells. Further, it had a diminishing effect on the concentration of IFN-α, H2O2 and MDA and restored the level of IL-10 and the ratio of IFN-γ/IL-10 when applied in combination with flagellin. These results suggest that luteolin at lower concentrations may protect hepatic cells from an excessive inflammatory response and act as an antioxidant to attenuate oxidative damage.

Keywords: Salmonella; antioxidants; flavonoid; immunity; interleukin; lipid peroxidation; paratyphoid; phytochemical; poultry.