A simple strategy for the synthesis of flower-like textures of Au-ZnO anchored carbon nanocomposite towards the high-performance electrochemical sensing of sunset yellow

Food Chem. 2020 Apr 18:323:126848. doi: 10.1016/j.foodchem.2020.126848. Online ahead of print.

Abstract

Consumption of sunset yellow (SY) above a certain concentration through food products may leads to adverse health issues. Therefore, it is imperative to develop technologies for rapid and selective detection of SY. Herein, a flower-like reduced graphene oxide (rGO)-graphitic carbon nitride (g-CN)/ZnO-Au nanoparticle (NPs) has been prepared and utilized for the specific detection of SY. The fabricated rGO-g-CN/ZnO-AuNPs composite was characterized and investigated by XRD, FTIR, SEM, TEM, XPS, EIS, and voltammetry techniques. Characterization techniques elucidated the deposition of ZnO-AuNPs on to the rGO-g-CN and successful fabrication of rGO-g-CN/ZnO-AuNPs composite. rGO-g-CN/ZnO-AuNPs composite possesses excellent catalytic activity for the oxidation of SY. Developed rGO-g-CN/ZnO-AuNPs sensor exhibits LOD of 1.34 nM for SY concentrations ranging from 5 to 85 nM. Noteworthily, the sensor has been successfully employed for the detection and recovery of SY in real-time samples. Fabricated composite opens up new avenues to develop electrochemical sensor for food safety.

Keywords: Electrochemical detection; Graphene oxide; Metal oxides; Square wave voltammetry; Sunset yellow.