Thermo-responsive properties driven by hydrogen bonding in aqueous cationic gemini surfactant systems

Soft Matter. 2016 Feb 7;12(5):1558-66. doi: 10.1039/c5sm02247a. Epub 2015 Dec 14.

Abstract

A series of unexpected thermo-responsive phenomena were discovered in an aqueous solution of the cationic gemini surfactant, 2-hydroxypropyl-1,3-bis(alkyldimethylammonium chloride) (n-3(OH)-n(2Cl), n = 14, 16), in the presence of an inorganic salt. The viscosity change trend for the 14-3(OH)-14(2Cl) system was investigated in the 20-40 °C temperature range. As the temperature increased, the viscosity of the solution first decreased to a minimum point corresponding to 27 °C, and then increased until a maximum was reached, after which the viscosity decreased again. In the 16-3(OH)-16(2Cl) system, the gelling temperature (T(gel)) and viscosity changes upon heating were similar to those in the 14-3(OH)-14(2Cl) system above 27 °C. The reversible conversion of elastic hydrogel to wormlike micelles in the aqueous solution of the 16-3(OH)-16(2Cl) system in the presence of an inorganic salt was observed at relatively low temperatures. Various techniques were used to study and verify the phase-transition processes in these systems, including rheological measurements, cryogenic transmission electron microscopy (cryo-TEM), electric conductivity, and differential scanning calorimetry. The abovementioned phenomena were explained by the formation and destruction of intermolecular hydrogen bonds, and the transition mechanisms of the aggregates were analyzed accordingly.