Exogenous melatonin mitigates saline-alkali stress by decreasing DNA oxidative damage and enhancing photosynthetic carbon metabolism in soybean (Glycine max [L.] Merr.) leaves

Physiol Plant. 2023 Jul-Aug;175(4):e13983. doi: 10.1111/ppl.13983.

Abstract

Saline-alkali stress (SS) is a common abiotic stress affecting crop cultivation worldwide, seriously inhibiting plant growth and biomass accumulation. Melatonin has been proven to relieve the inhibition of multiple abiotic stresses on plant growth. Therefore, soybean cultivars Heihe 49 (HH49, SS-tolerant) and Henong 95 (HN95, SS-sensitive) were pot-cultured in SS soil and then treated with 300 μM melatonin at the V1 stage, when the first trifoliate leaves were fully unfolded, to investigate if melatonin has an effect on SS. SS increased reactive oxygen species (ROS) accumulation in soybean leaves and thereby induced DNA oxidative damage. In addition, SS retarded cell growth and decreased the mesophyll cell size, chloroplast number, photosynthetic pigment content, which further reduced the light energy capture and electron transport rate in soybean leaves, and affected carbohydrate accumulation and metabolism. However, melatonin treatment reduced SS-induced ROS accumulation in the soybean leaves by increasing antioxidant content and oxidase activity. Effective removal of ROS reduced SS-induced DNA oxidative damage in the soybean leaf genome, which was represented by decreased random-amplified polymorphic DNA polymorphism, 8-hydroxy-20-deoxyguanine content, and relative density of apurinic/apyrimidinic-sites. Melatonin treatment also increased the volume of mesophyll cells, the numbers of chloroplast and starch grains, the contents of chlorophyll a and b and carotenoids in soybean seedling leaves treated with SS, thereby increasing the efficiency of effective light capture and electron transfer and improving photosynthesis. Subsequently, carbohydrate accumulation and metabolism in soybean leaves under SS were improved by melatonin treatment, which contributes to providing basic substances and energy for cell growth and metabolism, ultimately improving soybean SS tolerance.

MeSH terms

  • Antioxidants / metabolism
  • Carbohydrates
  • Carbon / metabolism
  • Chlorophyll A / metabolism
  • Glycine max*
  • Melatonin* / pharmacology
  • Oxidative Stress
  • Photosynthesis / physiology
  • Plant Leaves / metabolism
  • Reactive Oxygen Species / metabolism

Substances

  • Melatonin
  • Reactive Oxygen Species
  • Chlorophyll A
  • Carbon
  • Antioxidants
  • Carbohydrates