Enhanced Performance of La0.8Sr0.2FeO3-δ-Gd0.2Ce0.8O2-δ Cathode for Solid Oxide Fuel Cells by Surface Modification with BaCO3 Nanoparticles

Micromachines (Basel). 2022 May 31;13(6):884. doi: 10.3390/mi13060884.

Abstract

Recently, Fe-based perovskite oxides, such as Ln1-xSrxFeO3-δ (Ln = La, Pr, Nd, Sm, Eu) have been proposed as potential alternative electrode materials for solid oxide fuel cells (SOFCs), due to their good phase stability, electrocatalytic activity, and low cost. This work presents the catalytic effect of BaCO3 nanoparticles modified on a cobalt-free La0.8Sr0.2FeO3-δ-Gd0.2Ce0.8O2-δ (LSF-GDC) composite cathode at an intermediate-temperature (IT)-SOFC. An electrochemical conductivity relaxation investigation (ECR) shows that the Kchem value of the modified LSF-GDC improves up to a factor of 17.47, demonstrating that the oxygen reduction process is effectively enhanced after surface impregnation by BaCO3. The area-specific resistance (ASR) of the LSF-GDC cathode, modified with 9.12 wt.% BaCO3, is 0.1 Ω.cm2 at 750 °C, which is about 2.2 times lower than that of the bare cathode (0.22 Ω.cm2). As a result, the anode-supported single cells, with the modified LSF-GDC cathode, deliver a high peak power density of 993 mW/cm2 at 750 °C, about 39.5% higher than that of the bare cell (712 mW/cm2). The single cells based on the modified cathode also displayed good performance stability for about 100 h at 700 °C. This study demonstrates the effectiveness of BaCO3 nanoparticles for improving the performance of IT-SOFC cathode materials.

Keywords: BaCO3; Fe-based perovskite oxide; SOFCs; impregnation; surface exchange kinetics.

Grants and funding

This research was funded by the Fundamental Research Funds for the Central Universities of the University of Electronic Science and Technology of China (A03018023601020), the Key Research and Development Project of Anhui Province (201904a07020002), and the Anhui Provincial Department of Education (gxbjZD2021074).