Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase

J Biol Chem. 1998 Nov 27;273(48):32030-7. doi: 10.1074/jbc.273.48.32030.

Abstract

Phagocytes secrete the heme protein myeloperoxidase, which is present and active in human atherosclerotic tissue. These cells also generate hydrogen peroxide (H2O2), thereby allowing myeloperoxidase to generate a range of oxidizing intermediates and stable end products. When this system acts on L-tyrosine in vitro, it forms o, o'-dityrosine, which is enriched in atherosclerotic lesions. Myeloperoxidase, therefore, may oxidize artery wall proteins in vivo, cross-linking their L-tyrosine residues. In these studies, we used electron paramagnetic resonance (EPR) spectroscopy to identify an oxidizing intermediate in this reaction pathway and in parallel reactions catalyzed by horseradish peroxidase and lactoperoxidase. Using an EPR flow system to rapidly mix and examine solutions containing horseradish peroxidase, H2O2, and L-tyrosine, we detected free tyrosyl radical (a2,6H = 6.3 G, a3,5H = 1.6 G, and abetaH = 15. 0 G). We then used spin trapping techniques with 2-methyl-2-nitrosopropane (MNP) to further identify this intermediate. The resulting three-line spectrum (aN = 15.6 G) was consistent with an MNP/tyrosyl radical spin adduct. Additional MNP spin trapping studies with ring-labeled L-[13C6]tyrosine yielded a characteristic eight-line EPR spectrum (aN = 15.6 G, a13C (2) = 8.0 G, a13C (1) = 7.1 G, a13C (1) = 1.3 G), indicating that the MNP adduct resulted from trapping a carbon-centered radical located on the aromatic ring of L-tyrosine. This same eight-line spectrum was observed when human myeloperoxidase or bovine lactoperoxidase was substituted for horseradish peroxidase. Furthermore, a partially immobilized MNP/tyrosyl radical spin adduct was detected when we exposed a synthetic polypeptide composed of glutamate and L-tyrosine residues to the myeloperoxidase-H2O2-L-tyrosine system. The broadened EPR signal resulting from this MNP/polypeptide adduct was greatly narrowed by proteolytic digestion with Pronase, confirming that the initial spin-trapped radical was protein-bound. Collectively, these results indicate that peroxidases use H2O2 to convert L-tyrosine to free tyrosyl radical. They also support the idea that free tyrosyl radical initiates cross-linking of L-tyrosine residues in proteins. We suggest that this pathway may play an important role in protein and lipid oxidation at sites of inflammation and in atherosclerotic lesions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arteriosclerosis / metabolism
  • Arteriosclerosis / pathology
  • Cattle
  • Electron Spin Resonance Spectroscopy / methods
  • Free Radicals / analysis
  • Horseradish Peroxidase / metabolism*
  • Humans
  • Hydrogen Peroxide / metabolism
  • Inflammation
  • Kinetics
  • Lactoperoxidase / metabolism*
  • Lipid Peroxidation
  • Oxidation-Reduction
  • Peroxidase / metabolism*
  • Pronase
  • Tyrosine / analogs & derivatives*
  • Tyrosine / analysis
  • Tyrosine / metabolism

Substances

  • Free Radicals
  • tyrosyl radical Y(D)
  • Tyrosine
  • Hydrogen Peroxide
  • dityrosine
  • Horseradish Peroxidase
  • Lactoperoxidase
  • Peroxidase
  • Pronase