A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface

Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12083-7. doi: 10.1073/pnas.95.21.12083.

Abstract

Proteins play an important role in the biological mechanisms controlling hard tissue development, but the details of molecular recognition at inorganic crystal interfaces remain poorly characterized. We have applied a recently developed homonuclear dipolar recoupling solid-state NMR technique, dipolar recoupling with a windowless sequence (DRAWS), to directly probe the conformation of an acidic peptide adsorbed to hydroxyapatite (HAP) crystals. The phosphorylated hexapeptide, DpSpSEEK (N6, where pS denotes phosphorylated serine), was derived from the N terminus of the salivary protein statherin. Constant-composition kinetic characterization demonstrated that, like the native statherin, this peptide inhibits the growth of HAP seed crystals when preadsorbed to the crystal surface. The DRAWS technique was used to measure the internuclear distance between two 13C labels at the carbonyl positions of the adjacent phosphoserine residues. Dipolar dephasing measured at short mixing times yielded a mean separation distance of 3.2 +/- 0.1 A. Data obtained by using longer mixing times suggest a broad distribution of conformations about this average distance. Using a more complex model with discrete alpha-helical and extended conformations did not yield a better fit to the data and was not consistent with chemical shift analysis. These results suggest that the peptide is predominantly in an extended conformation rather than an alpha-helical state on the HAP surface. Solid-state NMR approaches can thus be used to determine directly the conformation of biologically relevant peptides on HAP surfaces. A better understanding of peptide and protein conformation on biomineral surfaces may provide design principles useful for the modification of orthopedic and dental implants with coatings and biological growth factors that are designed to enhance biocompatibility with surrounding tissue.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Crystallization
  • Durapatite / chemistry*
  • Kinetics
  • Magnetic Resonance Spectroscopy
  • Peptides / chemistry*
  • Protein Conformation
  • Salivary Proteins and Peptides / chemistry
  • Surface Properties

Substances

  • Peptides
  • Salivary Proteins and Peptides
  • Durapatite