Rapid reversal of adaptive increases in muscle GLUT-4 and glucose transport capacity after training cessation

J Appl Physiol (1985). 1998 Mar;84(3):798-802. doi: 10.1152/jappl.1998.84.3.798.

Abstract

Previous studies have shown that when exercise is stopped there is a rapid reversal of the training-induced adaptive increase in muscle glucose transport capacity. Endurance exercise training brings about an increase in GLUT-4 in skeletal muscle. The primary purpose of this study was to determine whether the rapid reversal of the increase in maximally insulin-stimulated glucose transport after cessation of training can be explained by a similarly rapid decrease in GLUT-4. A second purpose was to evaluate the possibility, suggested by previous studies, that the magnitude of the adaptive increase in muscle GLUT-4 decreases when exercise training is extended beyond a few days. We found that both GLUT-4 and maximally insulin-stimulated glucose transport were increased approximately twofold in epitrochlearis muscles of rats trained by swimming for 6 h/day for 5 days or 5 wk. GLUT-4 was 90% higher, citrate synthase activity was 23% higher, and hexokinase activity was 28% higher in triceps muscle of the 5-day trained animals compared with the controls. The increases in GLUT-4 protein and in insulin-stimulated glucose transport were completely reversed within 40 h after the last exercise bout, after both 5 days and 5 wk of training. In contrast, the increases in citrate synthase and hexokinase activities were unchanged 40 h after 5 days of exercise. These results support the conclusion that the rapid reversal of the increase in the insulin responsiveness of muscle glucose transport after cessation of training is explained by the short half-life of the GLUT-4 protein.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology*
  • Animals
  • Female
  • Glucose / metabolism*
  • Glucose Transporter Type 4
  • Half-Life
  • In Vitro Techniques
  • Insulin / pharmacology
  • Monosaccharide Transport Proteins / metabolism*
  • Muscle Proteins*
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / enzymology
  • Muscle, Skeletal / metabolism*
  • Physical Conditioning, Animal / physiology*
  • Rats
  • Rats, Wistar
  • Swimming

Substances

  • Glucose Transporter Type 4
  • Insulin
  • Monosaccharide Transport Proteins
  • Muscle Proteins
  • Slc2a4 protein, rat
  • Glucose