Modulation of cell death by Bcl-XL through caspase interaction

Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):554-9. doi: 10.1073/pnas.95.2.554.

Abstract

The caspases are cysteine proteases that have been implicated in the execution of programmed cell death in organisms ranging from nematodes to humans. Many members of the Bcl-2 family, including Bcl-XL, are potent inhibitors of programmed cell death and inhibit activation of caspases in cells. Here, we report a direct interaction between caspases and Bcl-XL. The loop domain of Bcl-XL is cleaved by caspases in vitro and in cells induced to undergo apoptotic death after Sindbis virus infection or interleukin 3 withdrawal. Mutation of the caspase cleavage site in Bcl-XL in conjunction with a mutation in the BH1 homology domain impairs the death-inhibitory activity of Bcl-XL, suggesting that interaction of Bcl-XL with caspases may be an important mechanism of inhibiting cell death. However, once Bcl-XL is cleaved, the C-terminal fragment of Bcl-XL potently induces apoptosis. Taken together, these findings indicate that the recognition/cleavage site of Bcl-XL may facilitate protection against cell death by acting at the level of caspase activation and that cleavage of Bcl-XL during the execution phase of cell death converts Bcl-XL from a protective to a lethal protein.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis*
  • Cell Line
  • Cysteine Endopeptidases / physiology*
  • Enzyme Activation
  • Escherichia coli
  • Humans
  • Mutation
  • Proto-Oncogene Proteins c-bcl-2 / physiology*
  • Signal Transduction*
  • bcl-X Protein

Substances

  • BCL2L1 protein, human
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-X Protein
  • Cysteine Endopeptidases