Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1

Mol Biol Cell. 1997 Feb;8(2):341-51. doi: 10.1091/mbc.8.2.341.

Abstract

Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actins / physiology*
  • Animals
  • Cell Adhesion / physiology*
  • Cytochalasin D / pharmacology
  • Cytoskeleton / physiology*
  • Fibroblasts
  • Humans
  • Intercellular Adhesion Molecule-1 / metabolism
  • Intermediate Filaments / metabolism
  • L Cells
  • Leukocytes / metabolism
  • Lymphocyte Function-Associated Antigen-1 / physiology*
  • Melanoma
  • Mice
  • Microtubules / metabolism
  • Protein Binding
  • Tumor Cells, Cultured

Substances

  • Actins
  • Lymphocyte Function-Associated Antigen-1
  • Intercellular Adhesion Molecule-1
  • Cytochalasin D