Interaction between ryanodine and neomycin binding sites on Ca2+ release channel from skeletal muscle sarcoplasmic reticulum

J Biol Chem. 1996 Apr 5;271(14):8387-93. doi: 10.1074/jbc.271.14.8387.

Abstract

Neomycin is a potent inhibitor of skeletal muscle sarcoplasmic reticulum (SR) calcium release. To elucidate the mechanism of inhibition, the effects of neomycin on the binding of [3H]ryanodine to the Ca2+ release channel and on its channel activity when reconstituted into planar lipid bilayer were examined. Equilibrium binding of [3H]ryanodine was partially inhibited by neomycin. Inhibition was incomplete at high neomycin concentrations, indicating noncompetitive inhibition rather than direct competitive inhibition. Neomycin and [3H]ryanodine can bind to the channel simultaneously and, if [3H]ryanodine is bound first, the addition of neomycin will slow the dissociation of [3H]ryanodine from the high affinity site. Neomycin also slows the association of [3H]ryanodine with the high affinity binding site. The neomycin binding site, therefore, appears to be distinct from the ryanodine binding site. Dissociation of [3H]ryanodine from trypsin-treated membranes or from a solubilized 14 S complex is also slowed by neomycin. This complex is composed of polypeptides derived from the carboxyl terminus of the Ca2+ release channel after Arg-4475 (Callaway, C., Seryshev, A., Wang, J. P., Slavik, K., Needleman, D. H., Cantu, C., Wu, Y., Jayaraman, T., Marks, A. R., and Hamilton, S. L. (1994) J. Biol. Chem. 269, 15876-15884). The proteolytic 14 S complex isolated with ryanodine bound produces a channel upon reconstitution into planar lipid bilayers, and its activity is inhibited by neomycin. Our data are consistent with a model in which the ryanodine binding sites, the neomycin binding sites, and the channel-forming portion of the Ca2+ release channel are located between Arg-4475 and the carboxyl terminus.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Binding, Competitive
  • Calcium Channels / metabolism*
  • Intracellular Membranes / metabolism
  • Ion Channel Gating
  • Kinetics
  • Muscle Proteins / metabolism*
  • Muscles / metabolism
  • Neomycin / metabolism*
  • Rabbits
  • Ryanodine / metabolism*
  • Ryanodine Receptor Calcium Release Channel
  • Sarcoplasmic Reticulum / metabolism*

Substances

  • Calcium Channels
  • Muscle Proteins
  • Ryanodine Receptor Calcium Release Channel
  • Ryanodine
  • Neomycin