Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+ mobilization in permeabilized hepatocytes

Biochem J. 1993 Jul 15;293 ( Pt 2)(Pt 2):413-22. doi: 10.1042/bj2930413.

Abstract

The mobilization of Ca2+ from intracellular stores by Ins(1,4,5)P3 in suspensions of permeabilized rat hepatocytes was potentiated by preincubating intact cells with adenosine 3':5'-cyclic phosphorothioate (cpt-cAMP), or by addition of the catalytic subunit of cyclic-AMP-dependent protein kinase (PKA) after cell permeabilization. This action of PKA involved both an enhancement in Ins(1,4,5)P3 sensitivity and an increase in the size of the Ins(1,4,5)P3-releasable Ca2+ pool. Inclusion of the protein phosphatase inhibitor okadaic acid in the permeabilization medium augmented the effects of PKA. Treatment with PKA catalytic subunit also increased the rate of ATP-dependent Ca2+ sequestration. To determine whether the effects of PKA on the Ca(2+)-release mechanism were secondary to alterations in the Ca2+ load of the Ins(1,4,5)P3-sensitive stores, a method was developed using Mn2+ as a Ca2+ surrogate to examine the permeability properties of the Ins(1,4,5)P3-gated channels independent of Ca2+ fluxes. This approach utilized the ability of Mn2+ to quench the fluorescence of fura-2 compartmentalized within intracellular Ca2+ stores in an Ins(1,4,5)P3-dependent manner, with thapsigargin added to block the ATP-activated Ca2+ pump and to ensure that the Ca2+ stores were fully depleted of Ca2+. The initial rate and extent of Mn2+ quenching of compartmentalized fura-2 was increased in a dose-dependent manner by Ins(1,4,5)P3. PKA activation increased both the initial rate and the extent of Mn2+ quenching at sub-maximal Ins(1,4,5)P3 doses, but there was no effect on the quench rate in the presence of saturating Ins(1,4,5)P3. However, the amount of compartmentalized fura-2 that could be quenched by Mn2+ in the presence of maximal Ins(1,4,5)P3 was increased by PKA. These data suggest two distinct actions of PKA on the Ins(1,4,5)P3-sensitive Ca2+ stores. (1) Modification of the ion-permeability properties of the Ins(1,4,5)P3 receptor/channel through an increase in the sensitivity to Ins(1,4,5)P3 for channel opening. (2) A recruitment of Ca2+ stores from the Ins(1,4,5)P3-insensitive pool. Both actions were independent of the Ca(2+)-loading state of the stores. Imaging studies of single permeabilized hepatocytes showed that the Ins(1,4,5)P3-sensitive stores were distributed throughout the cell and PKA enhanced the rate of Ins(1,4,5)P3-stimulated Mn2+ quench in individual cells, without modifying the subcellular distribution of Ins(1,4,5)P3-sensitive stores.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport
  • Calcium / metabolism*
  • Calcium Channels / metabolism
  • Cells, Cultured
  • Inositol 1,4,5-Trisphosphate / metabolism*
  • Liver / cytology
  • Liver / metabolism*
  • Male
  • Protein Kinases / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Spectrometry, Fluorescence

Substances

  • Calcium Channels
  • Inositol 1,4,5-Trisphosphate
  • Protein Kinases
  • Calcium