Regulation of glycolytically fueled Ca2+ uptake in smooth muscle plasmalemmal vesicles by phosphorylation

Am J Physiol. 1993 Oct;265(4 Pt 2):H1326-33. doi: 10.1152/ajpheart.1993.265.4.H1326.

Abstract

A highly purified plasma membrane vesicular preparation from porcine antrum had an endogenous protein kinase activity with substrates of molecular weights of 11, 15, 20.5, 25, 35, 44, 155, and 230 x 10(3). Phosphorylation of the plasma membranes by the endogenous protein kinase activity resulted in a stimulation of initial rates of Ca2+ uptake into inside-out vesicles, which was associated with an increase in the maximum velocity of the Ca2+ pump with no apparent changes in the half-maximal effective concentration for calcium. Because we have previously reported that a membrane-associated glycolytic system may preferentially provide ATP to fuel the Ca2+ pump (9), we examined the effects of phosphorylation on Ca2+ uptake when glycolysis was the sole source of ATP for the pump. We found that the stimulation of Ca2+ uptake by phosphorylation was more pronounced when Ca2+ uptake was supported by glycolysis rather than 2 mM ATP. When ATP was added at a level similar to that produced by endogenous glycolysis, the stimulation of Ca2+ uptake by phosphorylation was comparable to when glycolysis supported the Ca2+ pump. Our observations suggest that the dynamic range (up to threefold) for regulation of the plasmalemmal Ca2+ pump by phosphorylation is considerably larger than previously reported and thus likely to be of physiological significance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / pharmacology
  • Animals
  • Calcium / pharmacokinetics*
  • Calcium-Transporting ATPases / metabolism
  • Cell Membrane / metabolism
  • Glycolysis*
  • Muscle, Smooth / metabolism*
  • Phosphorylation
  • Swine

Substances

  • Adenosine Triphosphate
  • Calcium-Transporting ATPases
  • Calcium