Alterations in transforming growth factor-alpha and -beta production and cell responsiveness during the progression of MCF-7 human breast cancer cells to estrogen-autonomous growth

Cancer Res. 1994 Nov 15;54(22):5867-74.

Abstract

Hormonal management of breast cancer is confounded by an almost inevitable progression of cell growth from a steroid-regulated to a steroid-autonomous state. We have experimentally induced this progression in the estrogen growth-responsive MCF-7 human breast cancer cell line by long-term culture in the absence of steroids. After an initial period (10-12 weeks) of slowed growth in response to steroid deprivation, rapid, steroid-independent growth rates were consistently established. In these cells, which contained 3-fold elevated, functional estrogen receptor levels (as determined by induction of PgR and transactivation of a transiently transfected estrogen-responsive gene construct), antiestrogens still effectively suppressed cell proliferation, although estrogens only minimally increased the proliferation rate. Depletion of steroids from the growth media also resulted in a marked (70-80%) transient decrease in transforming growth factor (TGF) alpha mRNA and TGF-alpha protein production at 2 weeks that was followed by a progressive, partial return to the initial parental TGF-alpha mRNA and protein levels. In contrast, the mRNAs for TGF-beta 1, -beta 2, and -beta 3 and bioactive TGF-beta proteins transiently increased (3-10-fold) at 2 to 10 weeks of steroid deprivation and then returned by 24 weeks to the lower levels of the parental MCF-7 cells. These results suggest that the cells acquired steroid-independent means to regulate the production of these peptides. The long-term steroid-deprived sublines showed a loss of regulation of proliferation by TGF-alpha or anti-TGF-alpha antibodies and a 10-fold decrease in sensitivity to the growth-suppressive effects of TGF-beta 1, despite little change in receptor levels for these factors. The diminished contributions of TGF-alpha and TGF-beta s to the regulation of cell proliferation in long-term steroid-deprived MCF-7 breast cancer cells suggest that the TGFs do not act as major growth regulators in these estrogen-autonomous sublines. However, the marked, transient alterations in the levels of these growth factors indicate that they may play a role in the events which accompany the progression from estrogen-responsive to estrogen-autonomous growth. In addition, continued exposure to estrogen may be needed for the long-term maintenance of cell responsiveness to these TGFs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology*
  • Cell Division / drug effects
  • Culture Media / chemistry
  • Dose-Response Relationship, Drug
  • Estradiol / pharmacology
  • Humans
  • Neoplasms, Hormone-Dependent / metabolism
  • Neoplasms, Hormone-Dependent / pathology
  • RNA, Messenger / metabolism
  • Receptors, Estrogen / metabolism*
  • Receptors, Progesterone / metabolism*
  • Thymidine / metabolism
  • Transforming Growth Factor alpha / antagonists & inhibitors
  • Transforming Growth Factor alpha / biosynthesis*
  • Transforming Growth Factor alpha / pharmacology
  • Transforming Growth Factor beta / antagonists & inhibitors
  • Transforming Growth Factor beta / biosynthesis*
  • Transforming Growth Factor beta / pharmacology
  • Tumor Cells, Cultured

Substances

  • Culture Media
  • RNA, Messenger
  • Receptors, Estrogen
  • Receptors, Progesterone
  • Transforming Growth Factor alpha
  • Transforming Growth Factor beta
  • Estradiol
  • Thymidine