Metabolic events during programmed cell death in insect labial glands

Biochem Cell Biol. 1994 Nov-Dec;72(11-12):597-601. doi: 10.1139/o94-079.

Abstract

The labial gland of Manduca sexta is a valuable system to study the mechanisms of programmed cell death since the death of the gland is nearly synchronous and, except for the anterior duct, involves all of the tissue. The gland degenerates in 5 days during pupation. Our previous work documents a drop in total protein synthesis as the gland degenerates. To evaluate potential causes of this altered protein synthesis, we monitored several parameters of metabolism in dying cells: levels of adenosine triphosphate to estimate the energy resources of the gland; reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to assess mitochondrial respiration; levels of acid phosphatase to assay lysosomal enzyme activity; and concentrations of cyclic nucleotides and inositol triphosphate to monitor signaling. While protein synthesis fell precipitously on day 0, total adenosine triphosphate and mitochondrial respiration were unchanged until the cells underwent massive collapse on day 3. Lysosomal acid phosphatase increased during early metamorphosis, and ultimately the bulk of the cytoplasm was destroyed in autophagic vacuoles. Changes in the concentrations of second messengers were modest and late. The relationships between the metabolism and the collapse of the labial gland are under investigation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acid Phosphatase / metabolism
  • Animals
  • Apoptosis
  • Lysosomes / metabolism
  • Manduca / embryology
  • Manduca / physiology*
  • Second Messenger Systems / physiology*

Substances

  • Acid Phosphatase