A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis

Osteoporos Int. 1995 Mar;5(2):79-92. doi: 10.1007/BF01623308.

Abstract

Osteoporosis is a common metabolic disorder with considerable associated morbidity and mortality. The loss of bone mineral integrity and the resultant occurrence of atraumatic fractures are typically symptomatic of the disease. Currently skeletal status is commonly assessed using non-invasive conventional radiography and scintigraphy as well as densitometric techniques such as quantitative computed tomography and dual-energy X-ray absorptiometry. But, apart from gross bone mineral density, the fine structure of trabecular bone also plays an important role in defining the biomechanical competence of the skeleton. Recently attention has been focused on deriving measures that provide information about not only trabecular bone density but also microstructure. Magnetic resonance imaging (MRI) is one such new technique which potentially may provide information pertaining to bone density and structure as well as to occult fracture detection. Cortical bone produces a signal void in MR images, due to the fact that it contains very few mobile protons that give rise to a signal in MRI; also the MR relaxation time T2 of these protons is very short which produces a very fast decay of the MR signal during image acquisition. However, the trabecular bone network affects the MR properties of bone marrow. The difference in the magnetic properties of trabecular bone and bone marrow generates local imperfections in the magnetic field. The MR signal from bone marrow is modified due to these imperfections and the MR relaxation time T2 of marrow is shortened. The extent of relaxation time shortening and hence loss of signal intensity is proportional to the density of trabecular bone and marrow interfaces and their spatial architecture. Recent investigation in this area include studies aimed at quantifying marrow relaxation times and establishing their relationship to trabecular bone density and structure. In addition, with advances in imaging software and hardware, MR images at in-plane resolutions of 78-200 microns may be obtained. The trabecular bone structure is clearly revealed in such images and studies aimed at the development of high-resolution MRI techniques combined with quantitative image analysis techniques are currently under way. These potentially useful techniques for assessing osteoporosis and predicting fracture risk are reviewed in this paper.

Publication types

  • Review

MeSH terms

  • Bone Density
  • Humans
  • Magnetic Resonance Imaging*
  • Osteoporosis / diagnosis*