Methylated poly(L-lysine): conformational effects and interactions with polynucleotides

J Biomol Struct Dyn. 1985 Feb;2(5):899-913. doi: 10.1080/07391102.1985.10507608.

Abstract

Methylated lysine, arginine and histidine residues are found in a number of proteins (for example, histones, non-histone chromosomal proteins, ribosomal proteins, calmodulin, cytochrome C, etc.). We are studying the effects of methylation on the conformations of poly(lysine) and of the effects of methylation of poly(lysine) and poly(arginine) on interactions with polynucleotides. The conformational properties of epsilon-amino-methylated poly(lysine) differ from those of unmodified poly(lysine). Methylation increases resistance to thermally-induced and NaCl-induced changes in the CD spectrum. Guanidinium chloride increases (proportional to the degree of methylation) the extent of approach to the conformation in dispute as to its being a random coil or an extended helix. Methylation enhances aggregation in the helix-inducing solvent 0.5 M Ca(ClO4)2. With increasing methylation of poly(lysine), the conformation in dodecyl sulfate changes from beta, to 50% alpha, to random coil at the maximum methylation. Increasing methylation of poly(lysine) weakens the interaction with polynucleotides in respect to dissociation by salt, linearly with methyl content. Complexes of (dAdT)n.(dAdT)n with the polypeptides are increasingly stabilized to heat denaturation by progressive methylation. However, with a series of synthetic double-stranded RNA's and DNA's a more complex situation exists, Tm increasing or decreasing, depending on the base composition, sequence and type of sugar. Methylation of poly(lysine) and poly(arginine) can have opposite effects on Tm based on results with complexes with (dI)n.(dC)n. Methylated poly(lysine) affects the CD spectrum of polynucleotides, in a manner dependent on base composition and sequence. In some cases large positive or negative psi-spectra are induced, which, in the case of (dGdC)n.(dGdC)n, can be positive or negative depending on the degree of methylation of the polypeptide and the salt concentration. It is suggested that the biological effects of methylation proteins may be evoke by salt changes in the cell cycle, and that methylation can affect local interactions with nucleic acids and larger scale structure, and interactions with lipids.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Circular Dichroism
  • Guanidine
  • Guanidines / pharmacology
  • Hot Temperature
  • Methylation
  • Polylysine / metabolism*
  • Polynucleotides / metabolism*
  • Protein Conformation
  • Sodium Chloride / pharmacology
  • Spectrometry, Fluorescence

Substances

  • Guanidines
  • Polynucleotides
  • Polylysine
  • Sodium Chloride
  • Guanidine