Calycosin action against atherosclerosis: integrating network pharmacology and in-silico investigation

Acta Cardiol. 2024 May 21:1-9. doi: 10.1080/00015385.2024.2356902. Online ahead of print.

Abstract

Atherosclerosis, caused by lipid deposit in the arterial wall for narrowing the arteries, is an increased risk factor of developing heart failure. Presently, clinical first-line drug therapy can be found with side effects, and thus new substitute medication should be developed needfully. Calycosin is one of the most bioactive products refined from natural plant, and it exerts promising cardiovascular protective effect. However, the pharmacological mechanisms of calycosin against atherosclerosis have not been elaborated. In this study, a systematic network pharmacology combined with molecular docking analysis was used to reveal the interaction activity and biological target in calycosin against atherosclerosis. We screened all preparative targets linked to calycosin and atherosclerosis from the available public databases. These results indicated total 409 putative targets in calycosin action, 71 of which were interacted with atherosclerosis. Further biological docking analysis suggested that calycosin displayed the powerful binding affinities with target proteins, including interleukin-6 (IL6) and mitogen-activated protein kinase 3 (MAPK3) MAPK3. Then enrichment findings revealed that calycosin action to treat atherosclerosis might be related to inhibition of inflammatory reaction and oxidative stress through modulating nucleolus transcription factor for improving lipid metabolism. In conclusion, the anti-atherosclerotic targets and molecular mechanisms in calycosin action were revealed systematically through preclinical evaluation. And calycosin may be a potential natural compound for the treatment of atherosclerosis.

Keywords: Atherosclerosis; biological targets; calycosin; pharmacological functions.