Embedding Te4+ into Sn4+-Based Metal Halide To Passivate Structure Defects for High-Performance Light-Emitting Application

Inorg Chem. 2024 May 20. doi: 10.1021/acs.inorgchem.4c01185. Online ahead of print.

Abstract

Low-dimensional lead-halide hybrids are an emerging class of optical functional material but suffer the problems of toxicity and poor air stability. Among lead-free metal halides, tin(IV)-based metal halides are promising optoelectronic materials due to their robust structure and environmental friendliness. However, their photoluminescence (PL) properties are poor, and the underlying mechanisms are still elusive. Herein, a stable Sn4+-based halide hybrid, (C4H7N2)2SnCl6, was developed, which however exhibits poor PL properties at room temperature (RT) due to the lattice defects and the robust crystal structure. To enhance its PL efficiency, the Te4+ ion with a stereoactive 5s2 lone pair has been introduced into the lattice. As a result, Te4+-doped (C4H7N2)2SnCl6 displays broadband orange emission (∼640 nm) with a PL efficiency of ∼46% at RT. Interestingly, Te4+-doped (C4H7N2)2SnCl6 shows triple emission bands at 80 K, which could be due to the synergistic effect of the organic cations and the self-trapped state induced by Te4+. Additionally, high-performance white light-emitting diodes were prepared using Te4+-doped (C4H7N2)2SnCl6, revealing the potential of this material for lighting applications. This study provides new insight into the PL mechanism of Sn4+-based metal-halide hybrids and thus facilitates the design and development of eco-friendly light-emitting metal halides.