Frequency and mortality rate following antimicrobial-resistant bloodstream infections in tertiary-care hospitals compared with secondary-care hospitals

PLoS One. 2024 May 20;19(5):e0303132. doi: 10.1371/journal.pone.0303132. eCollection 2024.

Abstract

There are few studies comparing proportion, frequency, mortality and mortality rate following antimicrobial-resistant (AMR) infections between tertiary-care hospitals (TCHs) and secondary-care hospitals (SCHs) in low and middle-income countries (LMICs) to inform intervention strategies. The aim of this study is to demonstrate the utility of an offline tool to generate AMR reports and data for a secondary data analysis. We conducted a secondary-data analysis on a retrospective, multicentre data of hospitalised patients in Thailand. Routinely collected microbiology and hospital admission data of 2012 to 2015, from 15 TCHs and 34 SCHs were analysed using the AMASS v2.0 (www.amass.website). We then compared the burden of AMR bloodstream infections (BSI) between those TCHs and SCHs. Of 19,665 patients with AMR BSI caused by pathogens under evaluation, 10,858 (55.2%) and 8,807 (44.8%) were classified as community-origin and hospital-origin BSI, respectively. The burden of AMR BSI was considerably different between TCHs and SCHs, particularly of hospital-origin AMR BSI. The frequencies of hospital-origin AMR BSI per 100,000 patient-days at risk in TCHs were about twice that in SCHs for most pathogens under evaluation (for carbapenem-resistant Acinetobacter baumannii [CRAB]: 18.6 vs. 7.0, incidence rate ratio 2.77; 95%CI 1.72-4.43, p<0.001; for carbapenem-resistant Pseudomonas aeruginosa [CRPA]: 3.8 vs. 2.0, p = 0.0073; third-generation cephalosporin resistant Escherichia coli [3GCREC]: 12.1 vs. 7.0, p<0.001; third-generation cephalosporin resistant Klebsiella pneumoniae [3GCRKP]: 12.2 vs. 5.4, p<0.001; carbapenem-resistant K. pneumoniae [CRKP]: 1.6 vs. 0.7, p = 0.045; and methicillin-resistant Staphylococcus aureus [MRSA]: 5.1 vs. 2.5, p = 0.0091). All-cause in-hospital mortality (%) following hospital-origin AMR BSI was not significantly different between TCHs and SCHs (all p>0.20). Due to the higher frequencies, all-cause in-hospital mortality rates following hospital-origin AMR BSI per 100,000 patient-days at risk were considerably higher in TCHs for most pathogens (for CRAB: 10.2 vs. 3.6,mortality rate ratio 2.77; 95%CI 1.71 to 4.48, p<0.001; CRPA: 1.6 vs. 0.8; p = 0.020; 3GCREC: 4.0 vs. 2.4, p = 0.009; 3GCRKP, 4.0 vs. 1.8, p<0.001; CRKP: 0.8 vs. 0.3, p = 0.042; and MRSA: 2.3 vs. 1.1, p = 0.023). In conclusion, the burden of AMR infections in some LMICs might differ by hospital type and size. In those countries, activities and resources for antimicrobial stewardship and infection control programs might need to be tailored based on hospital setting. The frequency and in-hospital mortality rate of hospital-origin AMR BSI are important indicators and should be routinely measured to monitor the burden of AMR in every hospital with microbiology laboratories in LMICs.

Publication types

  • Multicenter Study
  • Comparative Study

MeSH terms

  • Adult
  • Aged
  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Bacteremia* / drug therapy
  • Bacteremia* / microbiology
  • Bacteremia* / mortality
  • Cross Infection / drug therapy
  • Cross Infection / epidemiology
  • Cross Infection / microbiology
  • Cross Infection / mortality
  • Drug Resistance, Bacterial
  • Female
  • Hospital Mortality
  • Humans
  • Male
  • Middle Aged
  • Retrospective Studies
  • Tertiary Care Centers* / statistics & numerical data
  • Thailand / epidemiology

Grants and funding

The study was supported by the DDC, MoPH, Thailand, and Defense Threat Reduction Agency (DTRA), U.S.. This research was funded in part by the Wellcome Trust (224681/Z/21/Z and Wellcome Trust Institutional Translational Partnership Award-MORU). CL is supported by the Wellcome Trust (106680/B/14/Z). BS is supported by a grant from the UK Department of Health and Social Care using UK aid funding managed by the Fleming Fund (R52354 CN001). For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.