Preparation of protein-stabilized Litsea cubeba essential oil nano-emulsion by ultrasonication: Bioactivity, stability, in vitro digestion, and safety evaluation

Ultrason Sonochem. 2024 Apr 29:107:106892. doi: 10.1016/j.ultsonch.2024.106892. Online ahead of print.

Abstract

Litsea cubeba essential oil (LCEO) has garnered widespread attention due to its robust biological activity. However, challenges such as high volatility, limited water solubility, and low bioavailability impede its application. Nano-emulsion encapsulation technology offers an effective solution to these issues. In this study, we prepared litsea cubeba essential oil nano-emulsion (LCEO-NE) for the first time using whey protein (WP) as the emulsifier through an ultrasonic-assisted method, achieving high efficiency with minimal energy consumption. Transmission electron microscopy and dynamic light scattering analyses revealed that the nanoparticles were uniformly spherical, with a particle size of 183.5 ± 1.19 nm and a zeta potential of -35.5 ± 0.95 mV. Stability studies revealed that LCEO-NE exhibited excellent thermal and salt stability, maintaining its integrity for up to four weeks when stored at 4 °C and 25 °C. In vitro digestion assays confirmed the digestibility of LCEO-NE. Furthermore, evaluation of the DPPH, ABTS, and antimicrobial activities revealed that LCEO-NE displayed superior bacteriostatic and antioxidant properties compared to LCEO. Scanning electron microscopy elucidated that its bacteriostatic effect involved the disruption of bacterial microstructure. Hemocompatibility and cytotoxicity assays demonstrated the safety of LCEO-NE within the effective concentration range. This research supports the utilization of nanoparticles for encapsulating LCEO, thereby enhancing its stability and bioactivity, and consequently expanding its applications in the food and pharmaceutical industries.

Keywords: Bioactivity; In vitro digestion; Litsea cubeba essential oil; Nano-emulsion; Safety evaluation; Ultrasonication.