Incorporation of ascorbic acid in chitosan-based coating combined with plasma-activated water: A technology for quality preservation of red grapes after simulated transportation

Int J Biol Macromol. 2024 May 15;270(Pt 2):132366. doi: 10.1016/j.ijbiomac.2024.132366. Online ahead of print.

Abstract

Red grapes possess multiple bioactivities but are highly susceptible to spoilage due to the lack of efficient preservation techniques. Plasma-activated water (PAW) treatment and the incorporation of antioxidants in bio-based coatings are promising methods for preserving produce. In this study, we tested a novel combination by incorporating ascorbic acid (AA) into a chitosan-based edible coating (CH) and combining it with plasma-activated water (PAW) treatment (CA-PAW) before simulating transport vibrations to extend the shelf-life of red grapes. The results from storage at 4 °C for 20 d indicated that the CA-PAW treatment reduced microbial counts by 2.62 log10 CFU/g for bacteria, 1.72 log10 CFU/g for yeasts and molds, and 1.1 log10 CFU/g for coliforms, in comparison to the control group treated with sterile deionized water. Total phenols and total flavonoid content were the highest observed, at 111.2 mg GAE/100 g and 262.67 mg RE/100 g, respectively. This treatment also inhibited water migration and erosion, and reduced damage to cell structure. Microstructural observations revealed that the CH coating on the surface of red grapes diminished the degradation of bioactive components. In conclusion, the CA-PAW treatment effectively inhibited the adverse physiological changes caused by vibration and mechanical damage to red grapes, maintained their nutritional and sensory qualities, and extended the shelf life by at least 8 d.

Keywords: Ascorbic acid; Chitosan; Plasma-activated water; Red grape; Shelf life.