Nano-Formulation Approaches to Enhance Transdermal Drug Delivery-An Updated Review of Nanovesicular Carrier "Transethosomes"

Pharm Nanotechnol. 2024 May 15. doi: 10.2174/0122117385306281240427073651. Online ahead of print.

Abstract

Transdermal drug delivery is an attractive and patient-friendly route for administering therapeutic agents. However, the skin's natural barrier, the stratum corneum, restricts the passage of many drugs, limiting their effectiveness. To overcome this challenge, researchers have developed various nanocarriers to enhance drug penetration through the skin. Transethosomes, a novel and promising drug delivery system, have emerged as an innovative solution for improving transdermal drug delivery. Transethosomes are a hybrid of two established nanocarriers: ethosomes and transfersomes. Ethosomes are lipid-based vesicles that can accommodate lipophilic and hydrophilic drugs, while transfersomes are deformable lipid vesicles designed to enhance skin penetration. Transethosomes combine the advantages of both systems, making them ideal candidates for efficient transdermal drug delivery. They are composed of phospholipids, ethanol, and water and exhibit high flexibility, enabling them to squeeze through the tight junctions of the stratum corneum. This abstract reviews the key characteristics of transethosomes, including their composition, preparation methods, mechanisms of action, characterization parameters, and prospects. Moreover, the recent advancements and applications of transethosomes in delivering various therapeutic agents, such as analgesics, anti-inflammatories, hormones, and skincare products, are explored. The enhanced skin penetration capabilities of transethosomes can potentially reduce systemic side effects and improve patient compliance, making them a valuable tool in the field of transdermal drug delivery. In conclusion, transethosomes represent a promising platform for overcoming the challenges of transdermal drug delivery. Their unique properties enable efficient drug permeation through the skin, offering a more controlled and effective means of administering a wide range of pharmaceutical and cosmetic products. This abstract highlights the potential of transethosomes as a valuable addition to the field of transdermal drug delivery and paves the way for further research and development in this area.

Keywords: Phospholipids; ethanol; ethosomes; permeation enhancers; transethosomes.; transfersomes.