Choline Halide-Based Deep Eutectic Solvents as Biocompatible Catalysts for the Alternating Copolymerization of Epoxides and Cyclic Anhydrides

ACS Sustain Chem Eng. 2024 Apr 30;12(19):7246-7255. doi: 10.1021/acssuschemeng.3c06766. eCollection 2024 May 13.

Abstract

Aliphatic polyesters have received considerable attention in recent years due to their biodegradability and biocompatible, mechanical, and thermal properties that can make them a suitable alternative to today's commercialized polymers. The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a route to synthesize a diverse array of polyesters that could be useful in many applications. However, the catalysts used rarely consider biocompatible catalysts in the case that any are left in the polymer. To the best of our knowledge, we report the first example of using deep eutectic solvents (DESs) as biocompatible catalysts for this target ROCOP with polymerization activity for at least six diverse monomer pairs. Choline halide salts are active for this polymerization, with dried salts showing polymerization slower than that of those conducted in air. Hydrogen bonding with water is hypothesized to enhance the rate-determining step of epoxide ring opening. While the presence of water improves the rate of polymerization, it also acts as a chain transfer agent, leading to smaller molar mass polymers than intended. Combining the choline halide salts with urea or ethylene glycol hydrogen bond donors in air led to DES catalysts that reacted similarly to the salts exposed to air. However, when generating these DESs in air-free conditions, they showed similar rates of polymerization without a drop in polymer molar mass. The hydrogen bonding provided by urea and ethylene glycol seems to promote the rate increase without serving as a chain transfer agent. Results reported herein display the promising potential of biocompatible catalyst systems for this ROCOP process as well as introducing the use of hydrogen bonding to enhance polymerization rates.