Modification of MgH2 hydrogen storage performance by nickel-based composite catalyst Ni/NiO

Heliyon. 2024 May 4;10(9):e30688. doi: 10.1016/j.heliyon.2024.e30688. eCollection 2024 May 15.

Abstract

In this study, the Ni/NiO catalyst was demonstrated to enhance the hydrogen storage performance of MgH2. The dehydrogenation of MgH2+10 wt% Ni/NiO started at approximately 180 °C, achieving 5.83 wt% of dehydrogenation within 10 min at 300 °C. Completely dehydrogenated, MgH2 began to rehydrogenate at about 50 °C, absorbing about 4.56 wt% of hydrogen in 10 min at 150 °C. In addition, the activation energies of dehydrogenation and rehydrogenation of MgH2+10 wt% Ni/NiO were 87.21 and 34.84 kJ/mol. During the dehydrogenation/rehydrogenation cycle, Mg2Ni/Mg2NiH4 could promote hydrogen diffusion, thus enhancing the hydrogen storage performance of Mg/MgH2.

Keywords: Hydrogen storage performance; MgH2; Modification; Ni/NiO.