Access to Main-Chain Photoswitching Polymers via Hydroxyl-yne Click Polymerization

ACS Macro Lett. 2024 May 16:681-687. doi: 10.1021/acsmacrolett.4c00216. Online ahead of print.

Abstract

Main-chain stimuli-responsive polymers synthesized via polymerization techniques that do not rely on metal-based catalysis are highly desirable for economic reasons and to avoid metal-polymer interactions. Herein, we introduce a metal-free head-to-tail organobase-catalyzed hydroxyl-yne click polymerization of an AB-type monomer to realize photoswitchable polymers featuring α-bismines as main-chain repeating units. The prepared main-chain α-bisimine-based polymers show excellent photoswitching in solution. We further post-functionalize the obtained polymers with various thiol compounds via thiol-Michael reactions to significantly lower the glass transition temperature (Tg), likely to be beneficial for the photoswitching process in the solid state. Thus, the herein introduced polymerization technique not only provides metal-free access to main-chain stimuli-responsive polymers, but also allows for the flexible post-modification of the obtained polymers to generate advanced macromolecular architectures with tunable properties.