Nanoconfinement Effect in Water Processable Discrete Molecular Complex-Based Hybrid Piezo- and Thermo-Electric Nanogenerator

Nano Lett. 2024 May 16. doi: 10.1021/acs.nanolett.4c00857. Online ahead of print.

Abstract

Water-processable hybrid piezo- and thermo-electric materials have an increasing range of applications. We use the nanoconfinement effect of ferroelectric discrete molecular complex [Cu(l-phe)(bpy)(H2O)]PF6·H2O (1) in a nonpolar polymer 1D-nanofiber to envision the high-performance flexible hybrid piezo- and thermo-electric nanogenerator (TEG). The 1D-nanoconfined crystallization of 1 enhances piezoelectric throughput with a high degree of mechano-sensitivity, i.e., 710 mV/N up to 3 N of applied force with 10,000 cycles of unaffected mechanical endurance. Thermoelectric properties analysis shows a noticeable improvement in Seebeck coefficient (∼4 fold) and power factor (∼6 fold) as compared to its film counterpart, which is attributed to the enhanced density of states near the Fermi edges as evidenced by ultraviolet photoelectric spectroscopy and density functional based theoretical calculations. We report an aqueous processable hybrid TEG that provides an impressive magnitude of Seebeck coefficient (∼793 μV/K) and power factor (∼35 mWm-1K-2) in comparison to a similar class of materials.

Keywords: Nanoconfinment; molecular complex; nanofiber; piezoelectric; thermoelectric.