Deep Learning Based Cystoscopy Image Enhancement

J Endourol. 2024 May 28. doi: 10.1089/end.2023.0751. Online ahead of print.

Abstract

Background: Endoscopy image enhancement technology provides doctors with clearer and more detailed images for observation and diagnosis, allowing doctors to assess lesions more accurately. Unlike most other endoscopy images, cystoscopy images face more complex and diverse image degradation because of their underwater imaging characteristics. Among the various causes of image degradation, the blood haze resulting from bladder mucosal bleeding make the background blurry and unclear, severely affecting diagnostic efficiency, even leading to misjudgment. Materials and Methods: We propose a deep learning-based approach to mitigate the impact of blood haze on cystoscopy images. The approach consists of two parts as follows: a blood haze removal network and a contrast enhancement algorithm. First, we adopt Feature Fusion Attention Network (FFA-Net) and transfer learning in the field of deep learning to remove blood haze from cystoscopy images and introduce perceptual loss to constrain the network for better visual results. Second, we enhance the image contrast by remapping the gray scale of the blood haze-free image and performing weighted fusion of the processed image and the original image. Results: In the blood haze removal stage, the algorithm proposed in this article achieves an average peak signal-to-noise ratio of 29.44 decibels, which is 15% higher than state-of-the-art traditional methods. The average structural similarity and perceptual image patch similarity reach 0.9269 and 0.1146, respectively, both superior to state-of-the-art traditional methods. Besides, our method is the best in keeping color balance after removing the blood haze. In the image enhancement stage, our algorithm enhances the contrast of vessels and tissues while preserving the original colors, expanding the dynamic range of the image. Conclusion: The deep learning-based cystoscopy image enhancement method is significantly better than other traditional methods in both qualitative and quantitative evaluation. The application of artificial intelligence will provide clearer, higher contrast cystoscopy images for medical diagnosis.

Keywords: blood haze removal; cystoscopy image enhancement; deep learning.