Sequence-guided Redesign of an Omega-transaminase from Bacillus megaterium for the Asymmetric Synthesis of Chiral Amines

Chembiochem. 2024 May 16:e202400285. doi: 10.1002/cbic.202400285. Online ahead of print.

Abstract

ω-Transaminases (ω-TAs) are attractive biocatalysts asymmetrically catalyzing ketones to chiral amines. However, poor non-native catalytic activity and substrate promiscuity severely hamper its wide application in industrial production. Protein engineering efforts have generally focused on reshaping the substrate-binding pockets of ω-TAs. However, hotspots around the substrate tunnel as well as distant sites outside the pockets may also affect its activity. In this study, the ω-TA from Bacillus megaterium (BmeTA) was selected for engineering. The tunnel mutation Y164F synergy with distant mutation A245T which was acquired through a multiple sequence alignment showed improved soluble expression, a 3.7-fold higher specific activity and a 19.9-fold longer half-life at 45℃. Molecule Dynamics simulation explains the mechanism of improved catalytic activity, enhanced thermostability and improved soluble expression of BmeTAY164F/A245T(2M). Finally, the resting cells of 2M were used for biocatalytic processes. 450 mM of S-methoxyisopropylamine (S-MOIPA) was obtained with an ee value of 97.3% and a conversion rate of 90%, laying the foundation for its industrial production. Mutant 2M was also found to be more advantageous in catalyzing the transamination of various ketones. These results demonstrated that sites that are far away from the active center also play an important role in the redesign of ω-TAs.

Keywords: ω-transaminase, chiral amine, transamination, substrate tunnel, distant site, asymmetric synthesis.