A Thorough Examination of the Variables Affecting the Quantum Efficiency of Radiative Decay of Trichlorotriphenylmethyl Radicals

J Phys Chem A. 2024 May 30;128(21):4279-4287. doi: 10.1021/acs.jpca.4c01779. Epub 2024 May 16.

Abstract

Fluorescence quantum efficiency is determined by the competition between radiation and nonradiation processes of the excited states. Understanding the factors affecting the radiation and nonradiative decay rates is of great significance for the design of luminescent materials. The excitation state deactivation mechanisms of singlet and triplet states have been extensively studied, providing a comprehensive understanding of the processes involved in the relaxation of these states. However, research on free radical systems involving doublet states is relatively scarce. Therefore, in this study, radiation and nonradiative decay rates and the mechanism of a series of trichlorotriphenylmethyl-based radicals were investigated theoretically. The results indicate that the relative rotations of electron donor and acceptor, as well as the internal rotations of trichlorotriphenylmethyl moiety, play important roles in energy dissipation through nonradiative channels. The effect of a solid-state environment on the radiation and nonradiative decay rates of radicals was investigated using a combination of quantum mechanics and molecular mechanics methods. The results indicate that the solid-state environment restricts the expansion of the conjugated system in the excited state of radicals, leading to a slight decrease in radiative decay rate. In addition, the solid-state environment reduces the reorganization energy and also affects the adiabatic excitation energy of radicals. The reduction in reorganization energy results in a decrease in nonradiative rate, while the opposite effect is observed for adiabatic excitation energy. The nonradiative rate of radicals in a solid-state environment is thus inflected by a combination of molecular geometric structure relaxation and ground-excited state energy gap.